$[Pd_3(PPh_3)_4]^{2+}$, a New Palladium Triphenylphosphine Complex

S. Kannan, Alan J. James, and Paul R. Sharp*

Department of Chemistry, University of Missouri–Columbia Columbia, Missouri 65211

Received September 30, 1997

Triphenylphosphine has been featured prominently in metal coordination chemistry.¹ Palladium triphenylphosphine complexes, in particular, have attracted their share of interest as a result of their numerous applications in organic synthesis and catalysis.² Here we report a previously unknown binary palladium triphenylphosphine complex with an unprecedented triphenylphosphine bonding mode.

Yellow $[(PPh_3)_2Pd(\mu-OH)]_2(BF_4)_2^3$ is only slightly soluble in CH₂Cl₂ but rapidly dissolves to give a red solution when ethanol is added. Examination of the red solution by ³¹P NMR spectroscopy reveals formation of Ph₃PO and a new complex with a pair of multiplets centered at 43.51 and 9.58 ppm. The new complex is also produced with other alcohols including MeOH, ⁱPrOH, and ^tBuOH,⁴ but the process slows markedly with the more hindered alcohols. Reduction of the CH2Cl2/ROH solvent volume followed by cooling gives beautiful transparent red and yellow crystals of [Pd₃(PPh₃)₄](BF₄)₂ (1) (89% yield). The ratio of the yellow to red crystals changes with the alcohol. With EtOH, only a few yellow crystals are observed, whereas with PrOH, ca. 30% of the crystal mass is yellow. All of the crystals become opaque minutes after separation from the mother liquor. A red EtOH crystal and a red and a yellow iPrOH crystal were examined by X-ray diffraction after rapid transfer from the mother liquor to the N2 cold stream of an X-ray diffractometer. The centrosymmetric Pd₃ cation structure shown in Figure 1 was revealed for all three crystals.⁵ The red ⁱPrOH crystal gave the best quality structure, and data for this structure are given here.⁶ The [Pd₃-(PPh₃)₄]²⁺ cation consists of a Ph₃P-Pd-Pd-Pd-Pd-Ph₃ linear chain sandwiched by two head-to-tail Ph2P-C6H6 groups each bonded through the P atom to one Pd atom and to two Pd atoms through a phenyl ring.⁷ Although PPh₃ has been observed to

(5) The crystal color difference appears to result from a different packing alignment of the cations. In the yellow crystals, the Pd-Pd-Pd axes are all parallel, whereas in the red crystals, the Pd-Pd-Pd axes are alternately parallel and perpendicular.

Figure 1. ORTEP drawing of the cationic portion of $[Pd_3(PPh_3)_4](BF_4)_2$ (1). Selected distances (Å) and angles (deg): Pd1–Pd2, 2.6587(3); Pd1–P1, 2.345(1); Pd1–P2, 2.255(1); Pd1–C63, 2.397(5); Pd1–C64, 2.288-(4); Pd2–C61, 2.183(4); Pd2–C62, 2.317(4); P2–C61, 1.813(4); C61–C62, 1.434(7); C62–C63, 1.406(6); C63–C64, 1.405(7); C64–C65, 1.413(7); C65–C66, 1.377(7); C66–C61, 1.437(6); Pd1–Pd2–Pd1, 180; P1–Pd1–Pd2, 172.27(3); P2–Pd1–Pd2, 71.08(3); P1–Pd1–P2, 101.35-(4); Pd1–P2–C61, 110.30(15); P2–C61–Pd2, 91.6(2); C66–C61–C62, 117.0(4); C61–C62–C63, 120.4(4); C62–C63–C64, 121.3(5); C65–C64–C63, 117.9(4); C64–C65–C66, 122.1(5); C65–C66–C61, 120.7-(5).

bridge two metal centers through the P atom and a Ph ring,⁸ a three-metal-center bridge as in 1 is without precedent.

The arene rings bond to the Pd centers through four carbon atoms, bridging the two Pd atoms as μ - η :² η ²-diene units (see Figure 1). Structural diagrams for **1** and related complexes are shown in Scheme 1. Arene bonding similar to that in **1** has been observed in the Pd₂ complexes **2**⁹ and **3**.¹⁰ Closely related to **1** is **4**,¹¹ where the MeNC ligands of **4** replace the P atom and the arene diene unit of the bridging phosphane ligands. In complexes **1** and **4** the Pd oxidation states in the chain may be described as Pd(I)-Pd(0)-Pd(I).

The formation of **1** involves Pd(II) reduction. While it is possible to write a balanced reaction where PPh_3 is the only reducing agent, the alcohol is most likely involved. Reduction of Pt(II) and Pd(II) complexes by alcohols has long been known.¹² To gain more information, the EtOH reaction was repeated in CD_2Cl_2 and monitored by ¹H NMR and ³¹P NMR spectroscopies under both an air atmosphere and a dinitrogen atmosphere. In both cases, the simultaneous formation of **1** and $CH_3C(O)H$ was observed, confirming that EtOH is the reducing agent. Under the dinitrogen atmosphere, only traces of OPPh₃ were observed, and although **1** was the major product, there were many minor products. In air, clean formation of **1**, $CH_3C(O)H$, and $OPPh_3$ is observed. Thus, the alcohol is the reducing agent and free PPh₃ is scavenged by air oxidation, thereby improving the yield of **1**.

¹H and ¹³C NMR data for **1** indicate either more symmetric bonding of the phenyl ring in solution or fluxional behavior. Instead of the expected six signals only four signals, are observed for the bound Ph ring in the ¹³C NMR spectrum. Five signals are expected in the ¹H NMR spectrum, but only three are

⁽¹⁾ McAuliffe, C. A.; Levason, W. *Phosphine, Arsine, and Silbene Complexes of Transition Elements*; Elsevier: Amsterdam, 1979; Vol. 1. Stelzer, O. In *Topics in Phosphorus Chemistry*; Griffith, E. J., Grayson, M., Eds.; Wiley: New York, 1977; pp 1–229.

⁽²⁾ Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: San Diego, CA, 1985. Tsuji, J. Palladium Reagents and Catalysts; Wiley: New York, 1995.

⁽³⁾ Bushnell, G. W.; Dixon, K. R.; Hunter, R. G.; McFarland, J. J. Can. J. Chem. 1972, 50, 3694.

⁽⁴⁾ Isomeric impurities may be responsible for the Bu^tOH reaction.

⁽⁶⁾ X-ray data (-100 °C): red crystals of $1 \cdot 2Pr^{i}OH \cdot CH_{2}Cl_{2}$ from CH₂-Cl₂/PrⁱOH, monoclinic (C2/c), a = 23.1169(13) Å, b = 15.0359(8) Å, c = 21.0036(12) Å, $\beta = 108.7850(10)^{\circ}$, Z = 4, R = 0.0480, GOF = 1.121.

⁽⁷⁾ There may also be bridge bonding of the P atom (P2) to the central Pd atom (Pd2) as proposed for [(dppp)Pd]₂(OTf)₂: Budzelaar, P. H. M.; van Leeuwen, P. W. N. M.; Roobeek, C. F. *Organometallics* 1992, 11, 23–25.
(8) Examples of bridging arylphosphine complexes: Robertson, G. B.; Whimp, P. O. J. Organomet. Chem. 1973, 60, C11–C13. Alyea, E. C.;

⁽⁸⁾ Examples of bridging arylphosphine complexes: Robertson, G. B.; Whimp, P. O. J. Organomet. Chem. 1973, 60, C11-C13. Alyea, E. C.; Ferguson, G.; Somogyvari, A. Organometallics 1983, 2, 668-674. Luck, R.; Morris, R. H.; Sawyer, J. F. Organometallics 1984, 3, 1009-1014. Elschenbroich, C.; Heikenfeld, G.; Wunsch, M.; Massa, W.; Baum G. Angew. Chem., Int. Ed. Engl., 1988, 27, 414-416. Cotton, F. A.; Luck, R. L.; Morris, R. H. Organometallics 1989, 8, 1282-1287. Cotton, F. A.; Kibala, P. A.; Shang, M.; Wojtczak, W. A. Organometallics 1991, 10, 2626-2630. Cotton, F. A.; Wojtczak, W. A. Inorg. Chim. Acta 1994, 217, 187-190. Singewald, E. T.; Mirkin, C. A.; Stern C. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1624-1627. Elschenbroich, C.; Isenburg, T.; Behrendt, A.; Frenzen, G.; Harms, K. J. Organomet. Chem. 1995, 501, 129-144.

⁽⁹⁾ Allegra, G.; Casagrande, G. T.; Immirzi, A.; Porri, L.; Vitulli, G. J. Am. Chem. Soc. **1970**, *92*, 289–294.

⁽¹⁰⁾ Dupont, J.; Pfeffer, M.; Rotteveel, M. A.; De Cian, A.; Fischer, J. Organometallics **1989**, 8, 1116–1118.

⁽¹¹⁾ Balch, A. L.; Boehm, J. R.; Hope, H.; Olmstead, M. M. J. Am. Chem. Soc. **1976**, 98, 7431–7432.

⁽¹²⁾ Hartley, F. R. The Chemistry of Platinum and Palladium; Applied Science: London, 1973; pp 29, 51. Belluco, U. Organometallic and Coordination Chemistry of Platinum; Academic: London, 1974; p 2. Maitlis, P. M. The Organic Chemistry of Palladium; Maitlis, P. M., Stone, F. G. A., West, R., Eds.; Academic: New York, 1971; Vol. 1, pp 10–11.

Scheme 1

observed. The observed signals are strongly upfield shifted out of the aromatic region consistent with the bonding description in A.¹³ A facile fluxional process involving tilting of the ring back and forth along the P–C bond axis would exchange the bound and unbound sides of the arene and seems the most likely explanation for the reduced number of NMR signals.

The extremely low PPh₃/Pd ratio of **1** suggests that **1** may be a potential source of unsaturation. As a first test of this we added 8 equiv of PPh₃ to a CH_2Cl_2 solution of **1** and monitored the mixture by ³¹P NMR spectroscopy. Remarkably, there is only a

(13) Spectroscopic data for [Pd₃(PPh₃)₄](BF₄)₂ (1): ¹H NMR (CD₂Cl₂, 250 MHz, 20 °C, ppm) 4.83 (t, J = 7.6 Hz, 4H, H2,6 of PPh–Pd), 6.00 (t, J = 6.4 Hz, 4H, H3,5 of PPh–Pd), 7.02 (br m, 2H, H4 of PPh–Pd), 7.26–7.53 (m, 50H, PPh); ¹³C{¹H} NMR (CD₂Cl₂, 63 MHz, 20 °C, ppm) 41.3 (dt, J = 43, 4 Hz, C1 of PPh–Pd), 88.3 (t, J = 9 Hz, C4 of PPh–Pd), 107.3 (t, J = 5.6 Hz, C2,6 of PPh–Pd), 117.1 (t, J = 3 Hz, C3,5 of Ph–Pd), 125.1 (d, J = 51 Hz, C1 of PPh₂ or PPh₃), 129.6 (m, C3,5 of PPh₂ and PPh₃), 131.5 (s, C4 of PPh₃), 132.9 (s, C4, PPh₂), 133.7 (t, J = 6.4 Hz, C2,6 of PPh₃), 135.71 (t, J = 7 Hz, C2,6 of PPh₂). Assignments are tentative. Many of the peaks are second-order patterns but approximate the first-order patterns given. ³¹P{¹H} NMR (CD₂Cl₂, 101 MHz, 20 °C, ppm): 43.51 (P_A, Ph₃PPd; 9.58 (P_B, Ph₂PPh–Pd). The second-order AA'BB' signals appear as approximate triplets of doublets with $J \approx 23$, 5 Hz. Simulation gives approximate values of $J_{AA'} = 78.0$ Hz, $J_{AB'} = 17$ Hz, $J_{AB} = -45$ Hz, $J_{AB'} = 43$ Hz. UV–vis (CH₂Cl₂, λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 382 (11 700), 340 (22 700), 488 (51 200).

(14) A feature of this reaction is the absence of a 31 P NMR signal for PPh₃, even at the beginning of the reaction. This is presumably a result of line broadening due to chemical exchange although the signals for 1 remain unaltered.

(15) Berry, D. E.; Bushnell, G. W.; Dixon, K. R.; Moroney, P. M.; Wan, C. *Inorg. Chem.* **1985**, *24*, 2625–2634 and references therein.

slow reaction at ambient temperatures with **1** persisting for hours after the addition.¹⁴ Final products after several days include $[(Ph_3P)_3PdCl]^+$ and $Pd(PPh_3)_x$. There is no reaction between **1** and CO (1 atm) or MeI at ambient temperatures.

In conclusion, we have isolated an unexpected new palladium triphenylphosphine complex. The novel triphenylphosphine bridging to three metal centers is surprisingly robust and resists degradation at ambient temperatures. The low PPh₃/Pd ratio does, however, suggest that **1** may be a useful precursor in stoichiometric and catalytic reactions. Complex **1** may also represent an intermediate in carbon—phosphorus bond cleavage reactions previously observed in Pt and Pd arylphosphine chemistry.¹⁵ The thermolysis of **1** as well as its use as a catalytic and stoichiometric reagent are under investigation.

Acknowledgment. We thank the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy (Grant No. DF-FG02-88ER13880), for support of this work. Grants from the National Science Foundation provided a portion of the funds for the purchase of X-ray (CHE-9011804) and NMR (PCM-8115599 and CHE 89-08304) equipment.

Supporting Information Available: An X-ray crystallographic file for **1** in CIF format. See any current masthead page for ordering and Internet access instructions.

JA973411X